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Abstract 

This paper considers both static and dynamic properties of chemically significant 
polyhedra. Static properties of polyhedra consider relationships between the numbers 
and degrees/sizes of polyhedral vertices, edges, and faces; polyhedral symmetries; and 
numbers of topologically distinct polyhedra of various types. Dynamic properties of 
polyhedra involve studies of polyhedral isomerizations from both macroscopic and 
microscopic points of view. Macroscopic aspects of polyhedral isomerization can be 
described by graphs called topological representations in which the vertices correspond 
to different permutational isomers and the edges to single degenerate polyhedral 
isomerization steps. Such topological representations are presented for isomerizations 
of polyhedra having five, six, and eight vertices. Microscopic aspects of polyhedral 
isomerizations arise from consideration of the details of polyhedral topology, such as 
the topological aspects of diamond-square-diamond processes. In this connection, Gale 
diagrams are useful for describing isomerizations of five- and six-vertex polyhedra, 
including the Berry pseudorotation of a trigonal bipyramid through a square pyramid 
intermediate and the Bailar or Ray and Dutt twists of an octahedron through a trigonal 
prism intermediate. 

1. Introduction 

An important concept for the description of molecular structures is that of a 
polyhedron. In this connection, a polyhedron may be regarded as a set in three- 
dimensional space consisting of (zero-dimensional) points, namely the vertices; (one- 
dimensional) lines connecting some pairs of the vertices, namely the edges; and (two- 
dimensional) surfaces formed by the edges, namely the faces. Polyhedra may appear 
in molecular structures either as coordination polyhedra in which the vertices represent 
ligands surrounding a central atom, or as cluster polyhedra in which the vertices 
represent multivalent atoms and the edges represent bonding distances. Deltahedra, 
which are polyhedra in which all faces are triangles, often play special roles in 
molcular structures such as those of the cage boranes and carboranes. 

This paper focuses on topological aspects of chemically significant polyhedra. 
Topology is the area of mathematics which in the abstract sense involves the study 
of neighborhood relationships in sets. This leads to the concept of a topological 
space, which has a precise mathematical definition [1]. However, here it suffices to 
regard polyhedra as a special type of topological space in which the vertices are 
members of the set and the edges describe neighborhood relationships. 
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Both static and dynamic properties of polyhedra are of chemical interest. 
Static properties of polyhedra include relationships between the numbers and degrees/ 
sizes of polyhedral vertices, edges, and faces; polyhedral symmetries; and numbers 
of topologically distinct polyhedra of various types. Dynamic properties of polyhedra 
include considerations of polyhedral isomerizations from both macroscopic and 
microscopic points of view. In this context, a polyhedral isomerization step involving 
conversion of one permutational isomer to another may be defined as a deformation 
of a specific polyhedron P1 until the vertices describe a new polyhedron/°2. Of particular 
interest are sequences of two polyhedral isomerization steps P1 ---) P2 --) P3, leading 
to a so-called degenerate polyhedral isomerization in which Pa is topologically equivalent 
to P1, although with some permutation of vertices not necessarily the identity 
permutation. Polyhedral isomerizations may be treated from either the macroscopic 
or microscopic points of view. The macroscopic view of polyhedral isomerizations 
describes relationships between permutational isomers using graphs called topological 
representations [2], in which the vertices correspond to different permutational 
isomers and the edges to single degenerate polyhedral isomerization steps. The 
microscopic view of polyhedral isomerizations elucidates possible single polyhedral 
isomerization steps by considering details of polyhedral topology, including possible 
diamond-square-diamond processes and more general methods for five- and six- 
vertex polyhedra based on Gale transformations [3]. 

This paper summarizes highlights of the static topology of polyhedra, as well 
as both the macroscopic and microscopic aspects of polyhedral isomerizations. 
Further details of many of these points are presented in a recent review [4]. 

2. Static polyhedron topology 

Of basic importance are the following relationships between possible numbers 
and types of vertices (v), edges (e), and faces ( f )  of polyhedra: 

(1) Euler's relationship [5]: 

v - e + f =  2. (1) 

(2) Relationship between the edges and faces: 

v - 1  

id~ = 2e. (2) 
i=3  

In eq. (2), fi is the number of faces with i edges. This relationship arises from the 
fact that each polyhedral edge is shared by exactly two faces. Since no face can have 
fewer edges than the three of a triangle, the following inequality must hold in all 
cases: 

3 f  < 2e. (3) 
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(3) Relationship between the edges and vertices: 

v - I  

Z i v  i = 2e. 
i=3  

(4) 

In eq. (4), vi is the number of vertices where i edges meet (i.e. a number of vertices 
of degree i). This relationship arises from the fact that each polyhedral edge joins 
exactly two vertices. Since no polyhedral vertex can have a degree less than three, 
the following inequality must hold in all cases: 

3v _< 2e. (5) 

Note the similar forms of eqs. (2) and (4) and of eqs. (3) and (5). 

(4) Totality of faces: 

V - I  

EI,--I 
i=3  

(6) 

(5) Totality of vertices: 

v - 1  

Z V i = V .  
i = 3  

(7) 

Equation (6) relates the f.'s to f and eq. (7) relates the vi 's  to v. 
In generating actual polyhedra, the operations of capping and dualization are 

often important. Capping a polyhedron P consists of adding a new vertex above the 
center of one of its faces F, followed by adding sufficient edges to connect the new 
vertex with each vertex of F. Such capping gives a new polyhedron P"  having one 
more vertex than P. Capping a triangular face leads to the relationships v"  = v + 1, 

e'  = e + 3, f '  = f +  2. In general, capping a face with fk edges leads to the relationships 
v"  = v + 1, e '  = e + fk ,  f '  = f + fk  - 1. A given polyhedron P can be converted into 
its dual P* by locating the centers of the faces of P* at the vertices of P and the 
vertices of P* above the centers of the faces of P. Two vertices in the dual P* are 
connected by an edge when the corresponding faces in P share an edge. A pair of  
dual polyhedra P and P* has ~the following properties: 

(1) The numbers of vertices, edges, and faces in such a pair of dual polyhedra 
satisfy the relationships v* = f ,  e* = e, f '* = v. 

(2) Dual polyhedra have the same symmetry elements and thus belong to the same 
symmetry point group. 

(3) Dualization of the dual of a polyhedron leads to the original polyhedron. 

(4) The degrees of the vertices of a polyhedon P correspond to the number of 
edges in the corresponding face of its dual P* and vice versa. 
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The duals of the cube, regular (lh) dodecahedron, and n-fold (Dnh) prisms are the 
regular (Oh) octahedron, the regular (In) icosahedron, and the n-fold (Dnh) bipyramids, 
respectively. The regular (T a) tetrahedron and n-fold (Cn~) pyramids are self-dual, 
i.e. their dualization leads to a polyhedron topologically equivalent to the original 
polyhedron. 

The problem of the classification and enumeration of polyhedra is complicated. 
Thus, there appear to be no formulas, direct or recursive, from which the number 
of topologically distinct polyhedra having a given number of vertices, edges, faces, 
or any combination of these elements can be calculated. Furthermore, existence of 
a set of v, vi, e , f ,  and f, values satisfying simultaneously eqs. (1), (2), (4), (6), and 
(7) does not guarantee the existence of a polyhedron having these values. For 
example, Duijvestijn [6] has demonstrated the non-existence of an 11-vertex deltahedron 
having 10 vertices of degree 5 and 1 vertex of degree 4, even though the corresponding 
values o f v  = 11, e = 27, f =  18, v4 = 1, v 5 = 10, vi = 0 (i ~ 4, 5),f3 = 18, f / =  0 
(i ~ 3) satisfy the required eqs. (1), (2), (4), (6), and (7). Duijvestijn and 
Federico [7] have enumerated by computer the polyhedra having up to 22 edges 
according to their numbers of vertices, edges, and faces, as well as their symmetry 
groups. Their work shows that there are 1, 2, 7, 34,257, 2606, and 32,300 topologically 
distinct polyhedra with 4, 5, 6, 7, 8, 9, and 10 vertices or faces, respectively. Britton 
and Dunitz [8] have tabulated the properties of all 301 topologically distinct polyhedra 
having eight or fewer vertices. The duals of these 301 polyhedra (i.e. all polyhedra 
having eight or fewer faces) are described by Federico [9]. 

3. Macroscopic aspects of polyhedral isomerizations 

The macroscopic description of polyhedral isomerizations uses topological 
representations [2], which are graphs representing the relationship between different 
polyhedra with v vertices as well as the different permutational isomers of a given 
polyhedron. Such graphs correspond to special cases of rearrangement graphs, which 
can be applied to a number of chemical problems. In such a graph, the vertices 
correspond to isomers and the edges correspond to isomerization steps. The number 
of vertices corresponds to the isomer count 

I = v ! / I R I ,  (8) 

where I R [ is the number of proper rotations in the symmetry point group. The 
degree d of a vertex corresponds to the number of new permutational isomers 
generated in a single step from the isomer represented by the vertex in question; 
this is called the connectivity of the isomer. In the cases of topological representations 
containing vertices corresponding to topologically distinct polyhedra P, P ' ,  P", etc., 
the following condition must apply: 

Id = I 'd '  = l ' d ' ,  etc. (9) 

This condition is called the closure condition. 
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A simple example of a topological representation is provided in the four- 
vertex system by the degenerate planar isomerization of a tetrahedron into its 
enantiomer through a square planar intermediate [2]. The isomer count for the 
tetrahedron lt~ t is 4 ! / IT[  = 24/12 = 2 and the isomer count for the square Isq is 
4!/[ D41 = 24/8 = 3. A topological representation of this process is a K2, 3 bipartite 
graph, which is derived from the trigonal bipyramid by deletion of the three equatorial- 
equatorial edges (fig. 1). The two axial vertices correspond to the two tetrahedral 

Td 

D4h 
D4h 

Fig. 1. The K2, 3 bipartite graph as a topological representation 
of the degenerate planar isomerization of a tetrahedron (Ta) into 
its enantiomer through a square planar intermediate (D4~). 

isomers and the three equatorial vertices correspond to the three square planar 
isomers. The connectivities of the tetrahedral (dt~t) and square planar (dsq) i s o m e r s  
are 3 and 2, respectively, in accord with the degrees of the corresponding vertices 
of the K2, 3 graph (fig. 1). This topological representation satisfies the closure conditon 
(eq. (9)), since (2)(3) = ltetdtet = (3)(2) = lsqdsq = 6. 

Some interesting graphs are found in the topological representations of 
the five-vertex trigonal bipyramid. The trigonal bipyramid has an isomer count 
I = 5!/[D3t = 120/6 = 20, corresponding to 10 enantiomer pairs. A given trigonal 
bipyramid isomer can be described by the labels of its two axial positions. A 
topological representation of the degenerate isomerizations of the 20 trigonal bipyramid 
isomers through square pyramid intermediates (Berry pseudorotation process [10,11 ]) 
is the Desargues-Levy graph (fig. 2). The 20 vertices of degree 3 depict the 20 
trigonal bipyramid isomers (i.e. Itbp = 20 a n d  dtb p = 3),  whereas the midpoints of 
the 30 edges depict the 30 square pyramid isomers (i.e./sp = 30 and dsp = 2) so that 
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Fig. 2. The Desargues-Levy graph as a topological 
representation of the dsd isomerizations of the 20 trigonal 
bipyramid isomers through square pyramid intermediates. 

the closure condition (eq. (9)) is satisfied [12]. A topological representation of  the 
degenerate isomerizations of the 10 trigonal bipyramid enantiomeric pairs through 
similar Berry pseudorotation processes [10, 11] leads to the ten-vertex Petersen's 
graph (fig. 3), which also satisfies the closure condition. 

34, 

12 25 

13 

Fig. 3. The Petersen's graph as a topological 
representation of the dsd isomerizations of the 10 
enantiomer pairs of the trigonal bipyramid isomers. 
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Useful topological representations can also be obtained for six-vertex 
systems [13]. Here, the process of interest is the isomerization of the octahedron 
through a trigonal prismatic intermediate, which is the underlying topology of 
both the Bailar [14] and Ray and Dutt [15] twists for octahedral M(bidentate)3 
chelates. The isomer counts are  l o c t =  67/I O I = 720/24 = 30 for the octahedron 
and/tp = 67/I D3I = 720/6 = 120 for the trigonal prism. A regular ( Ih )  dodecahedron 
in double group form can serve as the topological representation of this 
process [13]. The midpoints of the 30 edges are the 30 octahedron isomers. Line 
segments across a pentagonal face connecting these edge midpoints correspond to 
degenerate isomerizations of these 30 octahedron isomers through trigonal prism 
intermediates located at the edge midpoints. Thus, each of the 12 (pentagonal) faces 
of the regular dodecahedron contains 10 trigonal prism isomers. Figure 4 depicts 

J %, 
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¢ 
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t 

Fig. 4. One of the twelve pentagonal faces of the I h double 
group (pentagonal) dodecahedron used as a topological 
representation for the triple dsd isomerization of the octahedron 
(Oh) through a trigonal prismatic intermediate (D3h). 

one of the 12 pentagonal faces of this double group regular dodecahedron topological 
representation; the 10 lines on this face representing isomerization processes form 
a K s complete graph [16]. Since the connectivities of the octahedron (do:t) and trigonal 
prism (dip) are 8 and 2, respectively,/octdoct = ltpdtp = 240, so that the closure condition 
(eq. (9)) is satisfied. 

Development of topological representations for systems having more than six 
vertices is complicated by intractably large isomer counts. However, this difficulty 
can be alleviated if subgroups of the symmetric groups Pn (n = 7, 8, etc.) can be 
found which contain all of the symmetries of all of the polyhedra of interest. This 
is not possible for the seven-vertex system since there is no subgroup of the symmetric 
group/:'7 which contains both the fivefold symmetry of the pentagonal bipyramid 
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and the three-fold symmetry of the capped octahedron. However, the eight-vertex 
system is more favorable in this connection since the wreath product group P4[Pz] 
of order 384 [17- 19] contains all of the symmetries of the cube, hexagonal bipyramid, 
square antiprism, and bisdisphenoid ("Dza dodecahedron"), which are all of the eight- 
vertex polyhedra of actual or potential chemical interest [20,21]. The major effect 
of reducing the symmetry by a factor of 105 (=3 x 5 x 7) in going from Psto P4[P2] 
is the deletion of fivefold and sevenfold symmetry elements, which are not found 
in actual eight-vertex polyhedra other than the chemically uninteresting heptagonal 
pyramid. Restricted isomer counts I* = 384/IR I based on subgroups of the wreath 
product group P4 [P2] rather than the symmetric group P8 are the manageable numbers 
16, 32, 48, and 96 for the cube, hexagonal bipyramid, square antiprism, and 
bisdisphenoid, respectively. Topological representations based on the wreath product 
group P4[P2] rather than the symmetric group P8 are called hyperoctahedrally restricted 
since P4[P2] is the four-dimensional symmetry group of the four-dimensional analogue 
of the octahedron as well as that of its dual, namely the tesseract or four-dimensional 
cube. 

Fig. 5. The K4, 4 bipartite graph topological representation of the hyperoctahedrally 
restricted permutational isomerizations involving the cube (hexagon centers) and 
hexagonal bipyramid (edge midpoints). The processes depicted here require the 
accessibility of f orbitals and thus are mainly restricted to actinide chemistry. 
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Fig. 6. Details of the hexagon in the topological representation in fig. 5. The vertices represent 
square antiprism isomers and the edge midpoints represent bisdisphenoid ("D2a dodecahedron") 
isomers. The processes depicted here do not require the availability of f orbitals and thus can 
occur with central metal atoms having only s, p, and d orbitals energetically available. 

Using these ideas, hyperoctahedrally restricted topological representations 
for isomerizations of four types of eight-vertex polyhedra are depicted in figs. 5 and 
6 [22]. Figure 5 is a~K4,4 bipartite graph in which 8 cube enantiomer pairs are 
located at the centers of the hexagons and 16 hexagonal bipyramid enantiomer pairs 
are located at the edge midpoints. Since neither the cube nor the hexagonal bipyramid 
can be formed using only s, p, and d orbitals [23], this portion of the topological 
representation is not accessible if only s, p, and d orbitals are available for chemical 
bonding. 
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The detailed structure of a hexagon corresponding to a given pair of  cube 
enantiomers is depicted in fig. 6. The vertices of the hexagon correspond to the 
square antiprisms that can be generated from the cube in the center by twisting 
opposite pairs of faces. The midpoints of the hexagon edges correspond to bisdisphenoid 
enantiomer pairs. Traversing the circumference of a given hexagon corresponds to 
a sequence of degenerate polyhedral rearrangements interconverting the bisdisphenoids 
located at the midpoints of two joined hexagonal edges through the square antiprism 
intermediate represented by the vertex joining the edges through what is called 
below a double d iamond-square -d iamond  process. Since both the bisdisphenoid 
and square antiprism can be formed using only s, p, and d orbitals, the circumference 
of the hexagon (fig. 6) is accessible in ML 8 complexes, where M has the usual sp3d 5 
valence orbital manifold. However, interconversions between hexagons as depicted 
in fig. 5 require f orbitals and are thus restricted to actinide chemistry, where the 
valence shell includes f orbitals [24]. 

4. Microscopic aspects of polyhedral  isomerizations 

Now let us examine some microscopic aspects of polyhedral isomerizations. 
As early as 1966, Lipscomb [25] described framework rearrangements (isomerizations) 
in boranes and carboranes in terms of d iamond-square -d iamond  (dsd) processes. 
Such a dsd process in a polyhedron occurs at two triangular faces sharing an edge 
and can be depicted as follows: 

C ~l'f O B  ~ C D ~ C D 

B B 
lOa lOb lOc 

(10) 

In such a process, a configuration such as 10a can be called a dsd situation and the 
edge AB can be called a switching edge. If a, b, c, and d are taken to represent the 
degrees of the vertices A, B, C, and D, respectively, then the dsd type of  the switching 
edge AB can be represented as ab(cd). The quadrilateral face formed in structure 
10b can be called a pivot face. 

Consider a deltahedron having e edges. Such a deltahedron has e distinct dsd 
situations, one corresponding to each of the e edges acting as a switching edge. 
Applications of the dsd process at each of the switching edges in a deltahedron 
leads to a new deltahedron. In cases where the new deltahedron is topologically 
identical to the original deltahedron, the switching edge can be said to be degenerate. 
The dsd type of a degenerate switching edge ab(cd) can be seen by application of  
the process 10a ---) 10b ---) 10c to satisfy the conditions: 
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c = a - 1  and d = b - 1  or c = b - 1  a n d d = a - 1 .  (11) 

A deltahedron having one or more degenerate edges is inherently fluxional, whereas 
a deltahedron without degenerate edges is inherently rigid. 

The conditions in eq. (11) can be used to check chemically significant four- 
to twelve-vertex deltahedra for inherent rigidity or fluxionality with the following 
results: 

(1) Tetrahedron: No dsd process of any kind is possible since the tetrahedron 
is the K 4 complete graph [16]. A tetrahedron is therefore inherently rigid. 

(2) Trigonal bipyramid: The three edges connecting pairs of equatorial vertices 
are degenerate switching edges of the type 44(33). A dsd process using one of these 
edges as the switching edge, thereby involving a square pyramid intermediate, 
corresponds to the Berry pseudorotation [10, 11], which is believed to be the mechanism 
responsible for the stercochemical non-rigidity of trigonal bipyramid molecules and 
which is depicted in the topological representations in figs. 2 and 3. 

(3) Octahedron: The highly symmetrical octahedron has no degenerate edges 
and is therefore inherently rigid. 

(4) Pentagonal bipyramid: The seven-vertex pentagonal bipyramid has no 
degenerate edges and thus by definition is inherently rigid. However, a dsd process 
using a 45(44) edge of the pentagonal bipyramid (namely the edge connecting an 
equatorial vertex with an axial vertex) gives a capped octahedron. The capped 
octahedron is a low-energy polyhedron for ML 7 coordination complexes [26] but 
a forbidden polyhedron for boranes and carboranes because of its degree 3 vertex 
(tetrahedral chamber) [27]. This suggests fluxionality for ML 7 complexes, but not 
for pentagonal bipyramid boranes and carboranes. 

(5) Bisdisphenoids ("D2, ~ dodecahedron"): The eight-vertex bisdisphenoid has 
4 pairwise degenerate edges, which are those of the type 55(44) located in the 
subtetrahedron consisting of the degree 5 vertices of the bisdisphenoid. Thus, two 
successive, or more likely concerted, (parallel) dsd processes involving opposite 
55(44) edges will convert one bisdisphenoid into another bisdisphenoid through a 
square antiprism intermediate, as depicted in the circumference of the hexagon in 
fig. 6. Thus, a bisdisphenoid is inherently fluxional. 

(6) 4,4,4-Tricapped trigonal prism: The 4,4,4-tricapped trigonal prism has 
3 degenerate edges, which are those of the type 55(44) corresponding to the "vertical" 
edges of the trigonal prism. This suggests inherent fluxionality for this nine-vertex 
polyhedron. A dsd process using one of these degenerate edges as the switching 
edge involves a C4o 4-capped square antiprism intermediate [28]. 

(7) 4,4-Bicapped square antiprism: This ten-vertex deltahedron has no 
degenerate edges and is inherently rigid. 



62 R.B. King, Topological aspects of polyhedra 

(8) Edge-coalesced icosahedron: This eleven-vertex deltahedron, which is 
the polyhedron found in BllH~i and C2B9Hll [29], has 4 degenerate edges, all of 
the type 56(45), indicating inherent fluxionality. 

(9) Icosahedron: This highly symmetrical twelve-vertex deltahedron has no 
degenerate edges and is therefore inherently rigid. 

This simple analysis indicates that in deltahedron molecules the 4-, 6-, 
10-, and 12-vertex systems are inherently rigid; the 5-, 8-, 9-, and 11-vertex systems 
are inherently fluxional; and the rigidity of the 7-vertex system depends upon the 
energy difference between the two most symmetrical seven-vertex deltahedra, namely 
the pentagonal bipyramid and the capped octahedron. However, inherent fluxionality 
is not sufficient for actual fluxionality. Thus, orbital symmetry analyses by Gimarc 
and Ott on dsd processes in the five-vertex trigonal pyramid carboranes [30] and 
the nine-vertex tricapped trigonal prism boranes and carboranes [31] indicate that 
single dsd processes in these cases are blocked by crossings of filled and vacant 
molecular orbitals. A subsequent, more general study by Mingos and Johnston [32] 
indicates that single dscl processes in boranes and carboranes, which occur through 
an intermediate of C4~ symmetry, are orbitally forbidden (e.g. those in BsH ~- and 
B9H~-), but those which occur through an intermediate of C2~ or C s symmetry are 
orbitally allowed (e.g. those in BsH 2- and B 11H2i). These orbital symmetry analyses 
apply to polyhedra consisting of light atoms using only s and p valence orbitals such 
as boron or carbon, and cannot be extended directly to transition metal clusters 
using d orbitals of the vertex atoms. In addition, such orbital symmetry analyses 
are not applicable to coordination polyhedra rather than cluster polyhedra. 

The above microscopic approach for studying polyhedral isomerizations 
assumes dsd processes to be the fundamental building blocks. This is supported 
by a more general method [3] for examining all possible isomerizations 
involving non-planar intermediates of polyhedra having "few" (i.e. <6) vertices 
using a method developed by Gale [33] in 1956 for studying d-dimensional 
polytopes having only a few more than the minimum d +  1 vertices. Thus, 
if P is a d-dimensional polytope having v vertices, a Gale transformation leads to 
a Gale diagram of P consisting of v points in (v - d -  1)-dimensional space in one- 
to-one correspondence with the vertices of P [34]. The procedures for obtaining 
Gale transforms and Gale diagrams of polyhedra and polytopes are described in 
detail elsewhere [3,4, 33-36],  and they will not be repeated here since the equations 
are rather lengthy. 

The Gale diagram of a polytope P is significant in that it provides a method 
for determining the topological properties of P such as the subsets of the vertices 
that define faces of P, the combinatorial types of these faces, etc. Of particular 
significance in the present context is the fact that the topological properties of a 
polytope P which can be determined by the Gale diagram include all possible 
isomerizations of P to other polytopes having the same number of vertices and 
embedded in the same number of dimensions as P. Also of particular importance 
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is the fact that if v is not much larger than d (i.e. if v <  2d), then the dimension 
of  the Gale diagram is less than that of the original polytope P. 

Now consider polyhedra in the ordinary three-dimensional space of interest 
in chemical structures. Gale diagrams of five- and six-vertex polyhedra can be 
embedded into one- and two-dimensional space, respectively, thereby simplifying 
the analysis of possible vertex motions leading to isomerizations of  these polyhedra 
of  possible chemical interest. Thus, the (one-dimensional) Gale diagrams of five- 
vertex polyhedra can only contain the points 0, 1, and - 1  of  the straight line of 
varying multiplicities mo, ml, and m 1, respectively, where mo > 0, ml > 2, and 
m_ 1 > 2. The (two-dimensional) Gale diagrams of six-vertex polyhedra can only 
contain the center and circumference of the unit circle. Figure 7 depicts the Gale 
diagrams for the two topologically distinct five-vertex polyhedra (trigonal bipyramid 
and square pyramid) and the seven topologically distinct six-vertex polyhedra. The 
Gale diagrams of the six-vertex polyhedra are drawn to maximize the symmetry and 
the number of balanced diameters, i.e. diameters having points at each end. Each 
such balanced diameter corresponds to a quadrilateral face in the corresponding six- 
vertex polyhedron. 

The following properties of Gale diagrams of dimension 2 or lower impose 
important restrictions on configurations of points which can be Gale diagrams: 

(1) A line passing through the central point of a Gale diagram bisects the space 
of the Gale diagram into two halfspaces. Each such halfspace must contain 
at least 2 vertices (or 1 vertex of multiplicity 2) in the Gale diagram, not 
including any vertices actually on the bisecting line. Such a halfspace is 
called an open halfspace. Violation of this condition corresponds to a polyhedron 
with the impossible property of at least one vertex pair not connected by an 
edge which is closer in three-dimensional space than another vertex pair 
connected by an edge. 

(2) A coface of a polyhedron is the set of vertices remaining after forming a face 
of  the polyhedron. The regular octahedron is unusual among polyhedra in that 
all of its faces are also cofaces. The interior of the figure formed by connecting 
the vertices of a Gale diagram corresponding to a coface must contain the 
central point, Furthermore, the central point is a vertex of a Gale diagram if 
and only if the corresponding polyhedron is a pyramid. In this case, the 
central vertex corresponds to the apex of the pyramid, which is the coface 
corresponding to the base of the pyramid. 

Non-planar isomerizations of five- and six-vertex polyhedra correspond to 
allowed vertex motions in the corresponding Gale diagrams in fig. 7. In this context, 
an allowed vertex motion is the motion of one or more vertices which converts the 
Gale diagram of a polyhedron into that of another polyhedron with the same number 
of  vertices without ever passing through an impossible Gale diagram, such as one 
with an open halfspace containing only one vertex of unit multiplicity. Since two 
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C Cl~dgonal prism) 0 (pentagonal F~ttlmld) E 

I"t (oct lhedron)  d (bicapped t~ '~edron)  

Fig. 7. Gale diagrams for the two topologically distinct five-vertex 
polyhedra and the seven topologically distinct six-vertex polyhedra. 

polyhedra are topologically equivalent if and only if their Gale diagrams are 
isomorphic [34], such allowed vertex motions are faithful descriptions of all possible 
polyhedral isomerizations not involving planar isomerizations. 
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The application of Gale diagrams to the study of isomerizations of five-vertex 
polyhedra is nearly trivial but provides a useful illustration of this method. The only 
allowed vertex motion in a Gale diagram of a trigonal bipyramid is the motion of 
1 point from the vertex of multiplicity 3 through the center point to the vertex 
originally of multiplicity 2 (fig. 8). This interchanges the vertices of multiplicities 
2 and 3 and leads to an equivalent Gale diagram corresponding to an isomeric 
trigonal bipyramid. The motion through the center point of the Gale diagram corresponds 
to the generation of a square pyramid intermediate in the dsd process corresponding 
to the Berry pseudorotation [10, 11]. This analysis of the Gale diagrams of the two 
possible five-vertex polyhedra shows clearly that the only geometrically possible 
isomerizations of five-vertex polyhedra not involving planar pentagon intermediates 
can be described as successive dsd processes corresponding to successive Berry 
pseudorotations. 

Gale diagrams are also useful for the study of isomerizations of six-vertex 
polyhedra [3, 35, 36]. Such isomerizations are described by allowed motions of the 
vertices of the Gale diagrams along the circumference of the unit circle, or through 
the center in the case of polyhedral isomerizations involving a pentagonal pyramid 
intermediate. In this way, all degenerate isomerizations of six-vertex polyhedra not 
involving planar hexagon intermediates can be decomposed into a sequence of eight 
fundamental processes [3]. Two of these fundamental processes involve a pentagonal 
pyramid intermediate, whereas the remaining six processes are variations of single 
or multiple dsd processes. Of particular chemical interest is the triple dsd degenerate 
isomerization of an octahedron through a trigonal prism intermediate, as described 
by the Gale diagrams in fig. 9. The Bailar twist [14] and the Ray and Dutt twist 
[15] of six-coordinate M(bidcntate) 3 chelates are examples of this type of isomerization. 
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